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Basing on linear elasticity, the displacement field v, = B Inr (in cylindrical coordinates
7, 9, z) was derived. This displacement has a jump on the half-plane 9 = 0. Stresses orthogonal
to this discontinuity plane are continuous.

Screw dislocation is probably the most commonly used model of a crystal
imperfection. It is essential, that the displacement field of the dislocation is multi-
valued. It is discontinuous on a half-plane. Screw dislocation is a classical notion.
Its motion was considered and the stresses and deformation were calculated both
in the linear and nonlinear theory. Configurational forces in the linear theory and
Newtonian forces in the nonlinear theory were calculated. Interaction with other
defects, in particular with dislocation loops and point defects, were analysed.

Classical screw dislocation has the Burgers vector parallel to the z-axis. De-
note its length by b. In cylindrical coordinate system 8¢ = (r, 1, z), the displace-
ment field u’ and the stress field 7% are given by the expressions

(1) w' = u?=0, ud = b,
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In the Cartesian coordinate system (z,y, 2) these fields are

(3) Uy = uy =0, u, = barctan 2’
T
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Tzp =" Tz 2“b$2—+y2, Tzy = Tyz = 2mea
(4)
Teg = Tyy = Tzz = Tgy = Tyz = 0.

On the half-plane ¥ = 0 the displacement u, has a jump equal to 2wb.
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Consider the displacement field

(5) Uz =uy =0,  u, = f(r)g(d),

where f(r) and g(9) are functions of one variable. Neither of them equals identi-
cally zero. We shall derive from (5) another dislocation field. The other disloca-
tion has a jump of the displacement field on ¥ = 0. It seems that the existence
of the other dislocation was not noticted until now.

In the cylindrical coordinate system 6°, the contravariant coordinates of the
stress tensor corresponding to (5) are

d 1 dg(v
== 2udf (@), 12 =1%=2u—f(r) !31(19 2
(6) % 7

Two equilibrium equations are automatically satisfied, the third one leads to the
differential equation
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There exist two essentially different situations. If in Eq. (7) the derivative
d?g(9)/d¥? is different from zero, then for each r and ¥ must be satisfied the
relation

@)  1di(r)  dg(9)
(8) dr? r_dr gl 2 dy?

S50) At

At the left-hand side there is a function of r alone, and at the right-hand side —
a function of ¥ alone. Therefore each side must be equal to a constant that will
be denoted by 2. Parameter x is real or complex. It follows that the functions
f(r) and ¢(«) are governed by the equations

d’f(r) , 1df(r) 1 id ER .1 v pmvar:
(9) e =+ ; dP + ;Ef(r) ¥ 07 492 o 9(19) =0.
Solution of the second equation is the function
(10) 9(9) = Ay exp(k9) + Az exp(—k1),

which for each ¥ is continuous. The conclusion is that the case when d?g(19)/dv?
is different from zero corresponds to a continuous displacement field, not a dis-
location. Therefore further on we abandon this case.
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Consider in turn the case when the derivative d%g(d)/d¥? equals zero. In
accord with (6) there is

d*f(r) | 1df(r)
11 -

{1 dr? B r dr
where B and B; are constants. The constant B; does not have the expected
physical meaning, since it changes the plane for which ¥ = 0 and does not lead

to discontinuity. Therefore we take By = 0. The general solution of the differential
equation (11); is the function

(12) f(r)=Ci1+Calnr,

= O, g('l?) = BY + B],

where C; and Cy are constants. The case C; # 0, Co = 0 describes the classical
screw dislocation (1). Consider the other case Cy = 0, C2 # 0. It leads to the
following expression for the components of the displacement vector in cylindrical
coordinate system 6%:

(13) wt=u?=0, ud = bdlnr,

where B is a constant. This displacement field will be called the logarithmic screw
dislocation. As it was proved above, there exist no other solutions of the form
(5), which represents a discontinuous displacement. Obviously, any continuous
solution of linear elasticity may be added to the field (13). Such added field does
not change the discontinuities and the displacement jump.

The displacement field (13) may be expressed by the Cartesian coordinates
z, y, z. There is

1
(14) Uy = §Blog(ac2 + y2)arctan%, Uz = uy = 0.

The deformation tensor is determined by the displacement gradient. We obtain

¥ou, Ty ~4 5 2z Yy
e — 5T ZB (a:2 1 log(z® + y°) + marctan; g
10u 1 2y Y
(15) I Bgs (Filgy = 5 8yz = ZB (;m log(z? + %) + marctan;) i
Exx = €yy =Eyz = Ewy == Eyl- Py 0.

The shearing stresses 7.4, Ty are proportional to the deformations

1 —y i Y
T = Ta b b ENB (x—z—ﬁ 1Og(;1;2 + y2) + Warctan;) y

1 2
(16) Liiimpmiom Tuip s+ 5MB <—+—-2-log(:r +9%) + p _i/yzarctan%) .

Tex = Tyy = Tzz = Toy = Tyz = 0,
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where 4 is the Lamé constant. It is easy to check that the stress (16) satisfies
the equilibrium equations

01y, L

Oraz \ Omyz _ ¢

ox dy

The displacement u,(z,y) given in (14) is a multi-valued function, since
arctany/x is such a function. In accord with (3), there is

(17)

U, = 0 fOI‘ J = 0,
(18)
u, = 2mBlogr for .4 = 2x.

The shearing stress Tzy 18 a continuous function. On both sides of the half-
plane 9 = 0 it has the same values

1
(19) Tey = 2uB (; logz) :
In contrast to this, the stress Tz 18 a multivalued function

beiic=:0 for ¥ =0,
(20)

1
bodit = 21ruB;lnr for.. 9 = 27.

Note that on the half-plane ¥ = 0 both stresses and the displacement orthogonal
to this half-plane are continuous.

Finally we give the expression for the energy density calculated for a unit
volume. General expression for the energy density E is given by the formula

1
(21) E= E(szffza: + Tay€zy + Tzz€az + Tyzeyz),

which leads to the expression

1
(22) E= 4uBr—2 (logr + 2¢?).
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