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ANALYSIS OF IMPACT DEFORMATION OF CORRUGATED
' AND ANISOTROPIC SHELLS

B.A. GORDIENK O (CHABAROVSK)

The existence of material anisotropy (at E,/E, <1) in the shelis subjected to impact loaying
lowers the critical time and leads to axi-symmetric forms buckling. The data of experiments per-
formed on the longitudinally corrugated shells connfirm the theoretical results obtained.

The structurally anisotropic shells and shells made of pﬁysically anisotropic
materials have broad application in various fields of technology and architecture.
In a series of Russian and foreign papers (e.g. [1-11]) the general theory of shells
is developed; many papers are devoted to statics and vibrations. The resonance
of shells to high intensity transient loads is a domain much less explored. Among
papers representing this direction of research let us mention [12-19].

The behaviour of anisotropic shells subjected to dynamic interndl pressure is
considered in [12-14] and to axial impact—in [15-19]. The theory of shallow shells
is studied in papers [15-17]. In [I8] the experiments of impact of plastic glass shells
are described. The resulis concerning impact buckling of corrugated shells are pre-
sented in [19] :

In this paper the geomeltrically nonlinear equations of motion for anisetropic
shells of arbitrary geometry are obtained. On the basis of these equations the axisym-
metric deformation of conical and cylindrical shells subjected at the end to axial
compressive impact by perfectly rigid mass is investigated. Two phases of the buckling

" process are distinguished and the dependence of the critical time on a namber of
_variable parameters is shown. The results of €xperiments performed for longi-
tudinally corrugated cylindrical shells are presented.

1. EQUATIONS OF MOTION

It is assumed that principal directions of elasticity associated with physical or
strucutral anisotropy coincide with the directions of the principal curvatures of
the middle surface. Assuming in this case constant thickness of the shell and using
geometrically nonlinear equations of the three-dimensional theory of elasticity and
the Love-Kirhchoff hypothesis together with Timoshenko’s correction, the folow-
ing equations of motion may be obtained:
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In the equations (1.1)-(1.5) the following notations were introduced:
S:L_:Sic.)s A‘sk L ka=X?5 3’.€R+sg; (Ssk L]
&) =&yt ey, €3, =1 (82 t08L),

1?1 =X11 Y22 ng:ﬁ’(?(n‘l‘ﬂ}{u)s

(1'6) E?k =2k ep= 8;?1- s X?k =2k Xk :X:?f s (I# k),
2o =enten et Zxun=VutWiuH¥iels,
1 .
E33™ 7 T—TET?" {(ptas + pmpian) €11 H{ptan + 1 jta ) £12}5
_lﬁuf_l_ w; 94, w AP
A A A
1 3uj iy BA‘
1.7 L= — — —  # § =
( ) elJ Ai a‘f: AiAj 36_1‘ (I¢J)5 €33 09
1 aw'+ u ,
Lis_A,; a¢, R’ eg=—o;  (I=1,2)
1 Gy oy 94, o .
Wit A, 98 A A, %, G,j=1,2), w;=0 (i=1,2,3),
1 Gu; oy oA o
1.8 = — iy = (=
( ) ttyl A;‘ ag[ AiAj aéj (175.)')$ WlS Ri (I 1!2)3

g =,  H,=v, wy=u, o=pf;



ANALYSIS OF IMPACT DEFCRMATION OF CORRUGATED ... 31t

Aik=5?+eik(1_5€)j éi.k=wik(i_‘($:‘),
1.9 klzzkzl:(l—ﬂzﬂ)GIZ/’E, H=ps, E=E,,
ks =hai=(1— 2 M) Gia kSJE,  n=Eof/E=pt,a]tts: -

Here u, v, w, « and f denote the linear and angular displacements; p, £y, E;
are the material density and the elastic moduli in the directions £, and &,; iy, denote
the components of the shear strains in the directions §; during extension (compression}
along &; Gy, are the shear moduli in the corresponding planes, # is the anisotropy
coefficient (tangential); k% are the coefficients of tangential stress distribution;
A;, R, denote Lamé prameters and radii of the principal curvatures of the middie
surface; dy is the Kronecker symbol. The index “s” in the formulae (1.6) denotes
summation fram 1 to 3. The arrow brackets indicate the cyelic permutation of
the indices, and the dot denotes partial differentiation with respect to time 7.

As it is seen, the eguations obtained take into account the tangential and normal
inertia, transverse shear strain, nonlinear terms in the expressions for gy and xi, the
complementary stresses associated with the rotation of the normal to the middle
surface and interaction of all the vibration modes. The metric of shells is assumed
to be invariable in a process of deformation. The equations (1.1)~(1.5) are written
in a dimensionless form: the linear quantities are referred to the characteristic
linear parameter L, which for example, may be the length of the generator, and
time ¢ is referred to the period of the shear wave propagation along L:

(1.10) t=e, TIL  (ci=clj(l—p2n), co=Elp).
Here, T denotes physical time

To compare the shells having various anisotropy coeflicients it is convenient to
assume the isotropic shell as a standard one and fo normalize the time with respect
to the period of the wave propagation along the I of the standard shell, i.e. to use
in the Bq. (1.10) c=cof)/ 1— 4 instead of ¢;. In this case the right-hand sides of
the Bgs. (1.1)-(1.5) should be multiplied by (1 —u*)/(1—u* #). It is easy to show that
when the shells with variable anistoropy coefficient n=# (£, £} are considered,

the right-hand sides of the Eqs. (1.1)-(1.5) should be complemented by the following
terms (¢ is normalized with respect to ¢).
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The first three expressions are referred to the Eqs. (J1.1)-(1.3) while the second two
expressions — to the Eqs. (1.4)}-(1.5).
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2. AXISYMMETIRIC BUCKLING OF CONICAL AND CYLINDRICAL SHELLS

The axially symmetric deformation of conical and cylindrical shells was analyzéd
numerically by means of the digital computer *“Minsk-22". The equations of motion
and the basic relations were obtained from the Eqs. (1.1)-(1.9) under assumption
2.1 a=0, f=0, a4/o& =0
Besides for the conical shells we assumed additionally .

A;=1, A,=R+E&sin =Cih
2.2) | 1 2* | f p (=L
1/R, =0, 1/R,=cosp/d,.

Here R is the radius of the middle surface in the end cross-section absorbing imypact
2p is the angle of conicity.

YTotegration of the corresponding equations of motion was achieved for the follo-
wing initial and boundary conditions: '

w=0, a=Vceosg (=0}, #=0 (0<ig])

2.3)
w=0, w=VFsing (=0), w=0 (O<i<])
=0, a=0 for (=0;
(ot —wdjad)u=0, w=utgng, a=0 for &=0,
2.4)

M,
u=0, w=0, o=0 for ¢&=1 (K:W)
Assuming ¢=0 in the Eqgs. (2.2} (2.4) the corresponding equations for cylindrical
shells are obtained.

The equations of motion together with the initial and boundary conditions were
converted into difference form. The explicit scheme of the standard difference method
without analysis of the discontinuities was applied [20]. The derivatives were replaced
by the first order central differences. The values of the functions in the mesh points
lying outside the boundary were evaluated from the simultaneous consideration
of the corresponding equations of motion and initial or boundary conditions. The
choice of the mesh ratio ensuring stability of the method and convergence of the
computing process is based on the results of paper [21]. The majority of computa-
tions wete performed assuming s=1/40 and 7=1/160 (s and 7 are space and time
increments).

In Fig. 1 the results of computations of the impact buckling for cylindrical shelis
are presented. In this case V=0.06, k=0, y=0.1, R=0.3 and A=0.02. In particular
the distributions of the axial and radial displacements  and w (configurations of
the elastic surface for the isotropic shell #=1 are marked by dots), the dimensionless
curves of axial (2,) and circumferential (¢9,) strains and bending moment (x§,)
are presented at successive instants of time. Tn real scale u — 0.20, w — 0.04, £f; —
0.20, &3, — 0.02 and x9, — 20.00. It is obvious that the general picture of the impact



Fi6. 1. Development of axisymmetric cieforma-
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Fic. 2. Dependence of 7, on R, ¥, & and
# for cylindrical shell.
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buckling is analogous to the buckling of isotropic shells described in papers [22]
and [23]. Similarly to the case of isotropic shells the process of buckling impact
may be conventionaily divided into two phases suberitical and posteritical. During
the first phase, the comparatively slow and monotone buckling of the shell in the
direction of the external normal is observed. In addition, the unique halfwave
arising after the impact in the disturbed zone is seen. The influence of the geometri-
cal nonlinearity is practically negligible.

“The second phase is concerned with further complication of the configuration
of the elastic surface and with the sharp increase in the speed of growth of deflections.
The nonlinearity in this stage shows very essential influence on the all parameters
characterizing the impact deformation process in the shell. The objective boundary di-
viding the subcritical and postcritical phases is determined by the critical time which
is defined as the moment of snap-through of the shell toward the interior. This snap
through leads to the stable transformation of dynamic forms of the elastic surface.

The dependence of the critical time 7, on the several variable parameters is de-
picted in Fig. 2. The curve 1 represents the function £, (R) (#=0.25, V= 0.04). B
is seen that for R>>0.75 the critical time
is practically invariable. The curves 2
and 3 represent the function ¢, (V) for
#=0.25 and »=1.00, respectively (R=
=(.3), while the curves 4, 5 and 6
represent the function 7, () for vari-
ous impact velocities: ¥=0.04, 0.06
and 0.08. It is noteworthy that at
7<0.1 the critical time is almost in-
dependent of the anisotropy coefficient.
The relatton £, (4) is given by the curve
7 (n=0.1, ¥==0.06). The variation in
time of the integral parameters charac-
terizing buckling process of the shell
is shown in Fig. 3 (V=0.03, =01,
=0, R=03 and £=0.02): '
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FiG. 3. Time vaviations of integral parameters
and energy (cylindrical shell, x=0}. The vertical dashed line denotes the

critical time £, ~2.45 and T is the shell
energy. The curves 7-3 represent, respectively, the functions £, (£), £ (f) and f(O) (F- (1)
was traced with opposite sign); the curves 4-6 characterize arising in shell the
bending, circumferencial and axial siresses. The curves 7 and 8 show the variation
of the potential and kinetic energies. It is seen that after transformation of the dy-
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namic forms (#>1,) the absolute values of the all parameters rapidly increase. The
axial stresses (curve 6) and potential energy (7) are the exceptions. They initially
decrease and then start to oscillate. These oscillations express evidently the nonlinear
effects. The decay of the axial stresses at the posteritical state of buckling, shown
here (probably the first time) indicate the exhaustion of the carrying capacity of the
shell and, of course, may be treated as the loss of stability under axial impact. From
this Figure the peculiar behaviour of the dimensionless energy (T, T}) is also seen

(2.6) ‘ (T Ty =L,y E}( Mg 2/2).

E, and E, denote here physical values of the potential and kinetic energies. Together
with the computation of the energy of the system the particular energy components.
were also evaluated. It was found that in a subcritical buckling stage the energy
of tangential extension — compression brings the main contribution to the potential
energy of the shell. At r=0.2 this energy, in the case considered, constitutes more
than 99.8% of the entire potential energy. The bending and shear energies make
respectively 0.11% and less than 0.02%. At the postcritical phase the bending
and shear energies increase and at =4.8 the energy components are equal to 72.48 7,
24.009% and 3.52%, respectively. The energy of the axial motions constitutes the
main part of the kinetic energy at the subcritical stage, namely more than 99.76 %,
at t=1.0. At r=4.8 the fractions of the energy of axial, radial and rotational motions
42.29%, 56.98°% and 0.73 %, respectively. Thus during all buckling stages the energy
accumulated by shear and rotation constitutes negligible part of the total shell
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F16. 4. Time variations of integral parameicrs and energy  Frc. 5. Time variation of deflections
(cvlindrical shell, x£=0,25). and dependence of r, on p, F and #:
(i=1, 2) for conical shell.
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energy. The analogous relations with taliog into account the mass of the shell are
shown in Fig. 4 (x=0.25, the remaining parameters are unchdnged) The dashed
-curve describes kinetic energy of the impact load.

As a second example of the application of the equations derived we consider
the impact buckling of orthotropic conical shells with the anisotropy coefficient
assumed constant and varying linearly along the generator. The main tesults are
presented in Fig. 5. The curves -4 refer to conical shell with #=const. The curves
I (p=50%) and 2 (p=40°, ¥=0.06, R=0.25, h=0.05 and #=0.1) represent the
function £, (£). The relation ty (@) for the isotropic and anisotropic shells is shown
ilhustrated by curves 3 and 4. The functions 7, (V) (=30 and ¢, (¢) (F=0.06)
for 57, =0.01 and #,=1.00 (771 and 7, are the values of the coefficient # at the impacted
and not impacted end, respectively) are shown in curves 5 and 6. Distributions of
the functions ¢, (s,) (7,=1) and ¢, (7,) (g, =1; ¥=0.06, ¢=30) are demonstrated
in cueves 7 and 8, The general character of deformation ()f the conieal shelt is analo-
gous to the previous case.

3. EXPERIMENTS ON CORRUGATED CYLINDRICAL SHELLS

The experiments on the impact loading of shells were performed on the special
stand with falling load. The high-speed camera SKS-1m having the speed of about
4000 shots per second and the measuring microscope from the “Pentacet” set were
used for registration of the data. The weight of the load varied from 250 g to 10 kg
and the impact velocity reached up to 10 m/sec.
"““*‘-> The shells with longitudinal corrugation were

prepared by folding and glueing corrugated alu-
minium layers by the epoxy resin (#=0.25 mm,
ho2.0, I,=4.0 mm, where 4, and /; denote the
amplitude and the wave length of the corruga-
tion). The corrugation profile is almost sinusoid-
al. The radius and working height of the shell
were equal to 57 mm and 190 mm, respectively.
The clastic modulus in the annular direction
3 E,~17640 kg/om? (obtained from measuring)
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and the anisotropy coefficient #=0.025.

In Fig. 6 the set of pictures is presented (the
o mumbers are the consecutive numbers of the shots.
= . The curves I and 2 show the variation of the
 internal and external amplitude of the halfwaves,

Fia. 6. Experimental results. the curve 3 gives the rule of approaching of the

erids of shell.

It is seen that initially the impacted end moves simultaneously with the load
(the lower end is clamped to the massive plate of foundation). Then the load is
stopped and leaped off while the upper end of the shell starts to experience
‘the axial vibrations. The moment of separation of the load and the end corresponds

/_""---/
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1o 50-55-th photograph (#~0.0125 sec, it is missing in the shots). 'The amplitude
of radial vibrations of the external half-wave arise much earlier and may be observed
already from the 5-th shot. It is characteristic that the frequency of radial vibrations
is approximately two times higher than the frequency of axial vibrations. The peculiar
character of the impact deformation of the corrugated shells is clearly seen in the
picture presented in Fig. 7 (the left-hand side shell is after static compression).

Fic. 7. Computational resulés for statical and impact compression of corrugated shells.

In conclusion we should like to stress that in spite of the investigation performed
the problem of behaviour of the corrugated and anisotropic shells under axial impact
is still far from the final solution. In this domain further development of theoretical
studies and perfectioning the experimental measuring techniques is desired.
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STRESZCZENIE

ANALIZA DEFORMACIT POMARSZCZONYCH T ANIZOTROPOWYCH POWLOK
PODDANYCH OSIOWEMU UDERZENIU

Istnienie anizotropii materialu przy E./E, <1 powlok obciazonych uderzeniowo obniza czas
krytyczny i prowadzi do powstania osiowo-symetrycznych postaci wyboczenia, Dane dofwiadezen
przeprowadzonych na wzdboznie pomarszcezonych povidokach pokrywaia sie z wynikami badan
teoretycznych.

Peszwwme

HCCIIEJOBAHHUE YIOAPHOTO JE®OPMHPOBAHKA TOGPHUPOBAHHEIX MW
AHMA30TPOITHBIX OBOJIOYEK

Hamgume amuzoTponum Marepuana (apu FEa/E;<1) nms yAapHO BaTpy®eHHBIX O0GONOYEK
CHIDKACT KPUTHYCCKO® BPEMA H CHOCOOCTBYST PA3BUTHIO OCECCHMMETPHYHEIX (OPM BEITYyIRBAHEA.
Jlavubie SKCHEPHMEHTOB ¢ HPOAOARHG TOHPHPOBARHEN 0GONOMKAMH HAKCAATSH B YIOBICTEO-
PUTCIRHOM COOTBCTCTBEH C PE3YHBTATAMH TEODETHYECKWX HCCHe{OBAHUIL,
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